SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Long-range models in 1D revisited

Hugo Duminil-Copin, Christophe Garban, Vincent Tassion

9/11/20 Published in : arXiv:2011.04642

In this short note, we revisit a number of classical result{s} on long-range 1D percolation, Ising model and Potts models [FS82, NS86, ACCN88, IN88]. More precisely, we show that for Bernoulli percolation, FK percolation and Potts models, there is symmetry breaking for the 1/r^2-interaction at large \beta, and that the phase transition is necessarily discontinuous. We also show, following the notation of [ACCN88] that \beta^*(q)=1 for all q\geq 1.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Schrödinger Operators With Potentials Generated by Hyperbolic Transformations: I. Positivity of the Lyapunov Exponent

Long-range order for critical Book-Ising and Book-percolation

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved