SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Enhanced Stability in Quantum Optimal Transport Pseudometrics: From Hartree to Vlasov-Poisson

Mikaela Iacobelli, Laurent Lafleche

11/1/24 Published in : arXiv:2401.05773

In this paper we establish almost-optimal stability estimates in quantum optimal transport pseudometrics for the semiclassical limit of the Hartree dynamics to the Vlasov-Poisson equation, in the regime where the solutions have bounded densities. We combine Golse and Paul's method from [Arch. Ration. Mech. Anal. 223:57-94, 2017], which uses a semiclassical version of the optimal transport distance and which was adapted to the case of the Coulomb and gravitational interactions by the second author in [J. Stat. Phys. 177:20-60, 2019], with a new approach developed by the first author in [Arch. Ration. Mech. Anal. 244:27-50, 2022] to quantitatively improve stability estimates in kinetic theory.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Phase III direction(s)

  • Differential equations of Mathematical Physics

Effective module lattices and their shortest vectors

Affine Classical Lie Bialgebras for AdS/CFT Integrability

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved