SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Effective module lattices and their shortest vectors

Nihar Gargava, Vlad Serban, Maryna Viazovska, Ilaria Viglino

15/2/24 Published in : arXiv:2402.10305

We prove tight probabilistic bounds for the shortest vectors in module lattices over number fields using the results of arXiv:2308.15275. Moreover, establishing asymptotic formulae for counts of fixed rank matrices with algebraic integer entries and bounded Euclidean length, we prove an approximate Rogers integral formula for discrete sets of module lattices obtained from lifts of algebraic codes. This in turn implies that the moment estimates of arXiv:2308.15275 as well as the aforementioned bounds on the shortest vector also carry through for large enough discrete sets of module lattices.

Entire article

Phase I & II research project(s)

  • Geometry, Topology and Physics

Phase III direction(s)

  • Statistical Mechanics and Random Structures

Renormalisation in the presence of variance blowup

Enhanced Stability in Quantum Optimal Transport Pseudometrics: From Hartree to Vlasov-Poisson

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved