SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

The virtual K-theory of Quot schemes of surfaces

Noah Arbesfeld, Drew Johnson, Woonam Lim, Dragos Oprea, Rahul Pandharipande

24/8/20 Published in : arXiv:2008.10661

We study virtual invariants of Quot schemes parametrizing quotients of dimension at most 1 of the trivial sheaf of rank N on nonsingular projective surfaces. We conjecture that the generating series of virtual K-theoretic invariants are given by rational functions. We prove rationality for several geometries including punctual quotients for all smooth projective surfaces and dimension 1 quotients for surfaces X with p_g>0. We also show that the generating series of virtual cobordism classes can be irrational.
Given a K-theory class on X of rank r, we associate natural series of virtual Segre and Verlinde numbers. We show that the Segre and Verlinde series match in the following three cases: Quot schemes of dimension 0 quotients, Hilbert schemes of points and curves over surfaces with p_g>0, Quot schemes of minimal elliptic surfaces for quotients supported on fiber classes. Moreover, for punctual quotients of the trivial sheaf of rank N, we prove a new symmetry of the Segre/Verlinde series exchanging r and N. The Segre/Verlinde statements have analogues for punctual Quot schemes over curves.

Entire article

Phase I & II research project(s)

  • String Theory
  • Geometry, Topology and Physics

Steering in no-signalling theories

Optimal universal programming of unitary gates

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved