SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Universality for the random-cluster model on isoradial graphs

Hugo Duminil-Copin, Jhih-Huang Li, Ioan Manolescu

7/11/17 Published in : arXiv:1711.02338

We show that the canonical random-cluster measure associated to isoradial graphs is critical for all q \geq 1. Additionally, we prove that the phase transition of the model is of the same type on all isoradial graphs: continuous for 1 \leq q \leq 4 and discontinuous for q>4. For 1 \leq q \leq 4, the arm exponents (assuming their existence) are shown to be the same for all isoradial graphs. In particular, these properties also hold on the triangular and hexagonal lattices. Our results also include the limiting case of quantum random-cluster models in 1+1 dimensions.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Rotating superfluids and spinning charged operators in conformal field theory

The supersymmetric affine Yangian

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved