SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Symplectic geometry of Teichmüller spaces for surfaces with ideal boundary

Anton Alekseev, Eckhard Meinrenken

5/1/24 Published in : arXiv:2401.03029

A hyperbolic 0-metric on a surface with boundary is a hyperbolic metric on its interior, exhibiting the boundary behavior of the standard metric on the Poincaré disk. Consider the infinite-dimensional Teichmüller spaces of hyperbolic 0-metrics on oriented surfaces with boundary, up to diffeomorphisms fixing the boundary and homotopic to the identity. We show that these spaces have natural symplectic structures, depending only on the choice of an invariant metric on sl(2,R). We prove that these Teichmüller spaces are Hamiltonian Virasoro spaces for the action of the universal cover of the group of diffeomorphisms of the boundary. We give an explicit formula for the Hill potential on the boundary defining the moment map. Furthermore, using Fenchel-Nielsen parameters we prove a Wolpert formula for the symplectic form, leading to global Darboux coordinates on the Teichmüller space.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • Spectral gap problems in non-perturbative quantum theory
  • Holography and bulk-boundary correspondence
  • From Field Theory to Geometry and Topology

On Algebraization in Low-Dimensional Topology

Knowledge-Driven Modulation of Neural Networks with Attention Mechanism for Next Activity Prediction

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved