SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Superperiods and superstring measure near the boundary of the moduli space of supercurves

Giovanni Felder, David Kazhdan, Alexander Polishchuk

20/8/24 Published in : arXiv:2408.11136

We study the behavior of the superperiod map near the boundary of the moduli space of stable supercurves and prove that it is similar to the behavior of periods of classical curves. We consider two applications to the geometry of this moduli space in genus 2, denoted as \bar{\mathcal S}_2. First, we characterize the canonical projection of \bar{\mathcal S}_2 in terms of its behavior near the boundary, proving in particular that \bar{\mathcal S}_2 is not projected. Secondly, we combine the information on superperiods with the explicit calculation of genus 2 Mumford isomorphism, due to Witten, to study the expansion of the superstring measure for genus 2 near the boundary. We also present the proof, due to Deligne, of regularity of the superstring measure on \bar{\mathcal S}_g for any genus.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • Spectral gap problems in non-perturbative quantum theory
  • Holography and bulk-boundary correspondence
  • From Field Theory to Geometry and Topology

Non-Forward UV/IR Relations

Perfect Wave Transfer in Continuous Quantum Systems

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved