SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On the spatial Markov property of soups of unoriented and oriented loops

Wendelin Werner

15/8/15 Published in : arXiv:1508.03696

We describe simple properties of some soups of unoriented Markov loops and of some soups of oriented Markov loops that can be interpreted as a spatial Markov property of these loop-soups. This property of the latter soup is related to well-known features of the uniform spanning trees (such as Wilson's algorithm) while the Markov property of the former soup is related to the Gaussian Free Field and to identities used in the foundational papers of Symanzik, Nelson, and of Brydges, Fr\"ohlich and Spencer or Dynkin, or more recently by Le Jan.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Differentials on graph complexes II - hairy graphs

Conformal Invariance in the Long-Range Ising Model

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved