SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Self-avoiding walk on \mathbb{Z}^2 with Yang-Baxter weights: universality of critical fugacity and 2-point function

Alexander Glazman, Ioan Manolescu

1/8/17 Published in : arXiv:1708.00395

We consider a self-avoiding walk model (SAW) on the faces of the square lattice \mathbb{Z}^2. This walk can traverse the same face twice, but crosses any edge at most once. The weight of a walk is a product of local weights: each square visited by the walk yields a weight that depends on the way the walk passes through it. The local weights are parametrised by angles \theta\in[\frac{\pi}{3},\frac{2\pi}{3}] and satisfy the Yang-Baxter equation. The self-avoiding walk is embedded in the plane by replacing the square faces of the grid with rhombi with corresponding angles.
By means of the Yang-Baxter transformation, we show that the 2-point function of the walk in the half-plane does not depend on the rhombic tiling (i.e. on the angles chosen). In particular, this statistic coincides with that of the self-avoiding walk on the hexagonal lattice. Indeed, the latter can be obtained by choosing all angles \theta equal to \frac{\pi}{3}.
For the hexagonal lattice, the critical fugacity of SAW was recently proved to be equal to 1+\sqrt{2}. We show that the same is true for any choice of angles. In doing so, we also give a new short proof to the fact that the partition function of self-avoiding bridges in a strip of the hexagonal lattice tends to 0 as the width of the strip tends to infinity. This proof also yields a quantitative bound on the convergence.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Macroscopic loops in the loop O(n) model at Nienhuis' critical point

The full-sky relativistic correlation function and power spectrum of galaxy number counts: I. Theoretical aspects

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved