SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Quantum simulation of the Sachdev-Ye-Kitaev model using time-dependent disorder in optical cavities

Rahel Baumgartner, Pietro Pelliconi, Soumik Bandyopadhyay, Francesca Orsi, Nick Sauerwein, Philipp Hauke, Jean-Philippe Brantut, Julian Sonner

26/11/24 Published in : arXiv:2411.17802

The Sachdev-Ye-Kitaev (SYK) model is a paradigm for extreme quantum chaos, non-Fermi-liquid behavior, and holographic matter. Yet, the dense random all-to-all interactions that characterize it are an extreme challenge for realistic laboratory realizations. Here, we propose a general scheme for densifying the coupling distribution of random disorder Hamiltonians, using a Trotterized cycling through sparse time-dependent disorder realizations. To diagnose the convergence of sparse to dense models, we introduce an information-theory inspired diagnostic. We illustrate how the scheme can come to bear in the realization of the complex SYK4 model in cQED platforms with available experimental resources, using a single cavity mode together with a fast cycling through independent speckle patterns. The simulation scheme applies to the SYK class of models as well as spin glasses, spin liquids, and related disorder models, bringing them into reach of quantum simulation using single-mode cavity-QED setups and other platforms.

Entire article

Phase I & II research project(s)

  • String Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Gravity as a mesoscopic system

Operator K-complexity in DSSYK: Krylov complexity equals bulk length

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved