SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Planar random-cluster model: scaling relations

Hugo Duminil-Copin, Ioan Manolescu

30/11/20 Published in : arXiv:2011.15090

This paper studies the critical and near-critical regimes of the planar random-cluster model on \mathbb Z^2 with cluster-weight q\in[1,4] using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents \beta, \gamma, \delta, \eta, \nu, \zeta as well as \alpha (when \alpha\ge0). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalization of Kesten's classical scaling relation for Bernoulli percolation involving the "mixing rate" critical exponent \iota replacing the four-arm event exponent \xi_4.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Long-range order for critical Book-Ising and Book-percolation

Spinning S-matrix Bootstrap in 4d

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved