SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Planar random-cluster model: fractal properties of the critical phase

Hugo Duminil-Copin, Ioan Manolescu, Vincent Tassion

29/7/20 Published in : arXiv:2007.14707

This paper is studying the critical regime of the planar random-cluster model on

\mathbb Z^2

  with cluster-weight

q\in[1,4)

. More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their extremal lengths. They imply in particular that any fractal boundary is touched by macroscopic clusters, uniformly in its roughness or the configuration on said boundary. Additionally, they imply that any sub-sequential scaling limit of the collection of interfaces between primal and dual clusters is made of loops that are non-simple.
We also obtain a number of properties of so-called arm-events: three universal critical exponents (two arms in the half-plane, three arms in the half-plane and five arms in the bulk), quasi-multiplicativity and well-separation properties (even when arms are not alternating between primal and dual), and the fact that the four-arm exponent is strictly smaller than 2. These results were previously known only for Bernoulli percolation (q=1) and the FK-Ising model (q=2).
Finally, we prove new bounds on the one, two and four arms exponents for

q\in[1,2]

. These improve the previously known bounds, even for Bernoulli percolation.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Poncelet property and quasi-periodicity of the integrable Boltzmann system

Density of imaginary multiplicative chaos via Malliavin calculus

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved