SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Ornstein-Zernike behavior for Ising models with infinite-range interactions

Yacine Aoun, Sébastien Ott, Yvan Velenik

24/12/21 Published in : arXiv:2112.13057

We prove Ornstein-Zernike behavior for the large-distance asymptotics of the two-point function of the Ising model above the critical temperature under essentially optimal assumptions on the interaction. The main contribution of this work is that the interactions are not assumed to be of finite range. To the best of our knowledge, this is the first proof of OZ asymptotics for a nontrivial model with infinite-range interactions.
Our results actually apply to the Green function of a large class of "self-repulsive in average" models, including a natural family of self-repulsive polymer models that contains, in particular, the self-avoiding walk, the Domb-Joyce model and the killed random walk.
We aimed at a pedagogical and self-contained presentation.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Multiple-point residue formulas for holomorphic maps

The weight two compactly supported Euler characteristic of moduli spaces of curves

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved