SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

From Newton's second law to Euler's equations of perfect fluids

Daniel Han-Kwan, Mikaela Iacobelli

26/6/20 Published in : arXiv:2006.14924

Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which the incompressible Euler equations can be rigorously derived from N-body dynamics with repulsive Coulomb interaction. Our analysis is based on the modulated energy methods of Brenier and Serfaty.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Global strong solutions in mathbb{R}^3 for ionic Vlasov-Poisson systems

Resurgence and renormalons in the one-dimensional Hubbard model

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved