SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

A new proof of the sharpness of the phase transition for Bernoulli percolation on $\mathbb Z^d$

Hugo Duminil-Copin, Vincent Tassion

10/2/15 Published in : arXiv:1502.03051

We provide a new proof of the sharpness of the phase transition for nearest-neighbour Bernoulli percolation. More precisely, we show that
- for $p<p_c$, the probability that the origin is connected by an open path to distance $n$ decays exponentially fast in $n$.
- for $p>p_c$, the probability that the origin belongs to an infinite cluster satisfies the mean-field lower bound $\theta(p)\ge\tfrac{p-p_c}{p(1-p_c)}$.
This note presents the argument of \cite{DumTas15}, which is valid for long-range Bernoulli percolation (and for the Ising model) on arbitrary transitive graphs in the simpler framework of nearest-neighbour Bernoulli percolation on $\mathbb Z^d$.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model

Matrix models from operators and topological strings

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved