SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Infinite-Length Limit of Spectral Curves and Inverse Scattering

Niklas Beisert, Kunal Gupta

8/9/24 Published in : arXiv:2409.05228

Integrability equips models of theoretical physics with efficient methods for the exact construction of useful states and their evolution. Relevant tools for classical integrable field models in one spatial dimensional are spectral curves in the case of periodic fields and inverse scattering for asymptotic boundary conditions. Even though the two methods are quite different in many ways, they ought to be related by taking the periodicity length of closed boundary conditions to infinity. Using the Korteweg-de Vries equation and the continuous Heisenberg magnet as prototypical classical integrable field models, we discuss and illustrate how data for spectral curves transforms into asymptotic scattering data. In order to gain intuition and also for concreteness, we review how the elliptic states of these models degenerate into solitons at infinite length.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Combining underground and on-surface third-generation gravitational-wave interferometers

Certifying high-dimensional quantum channels

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved