SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Harmonic locus and Calogero-Moser spaces

Giovanni Felder, Alexander P. Veselov

29/4/24 Published in : arXiv:2404.18471

We study the harmonic locus consisting of the monodromy-free Schrödinger operators with rational potential and quadratic growth at infinity. It is known after Oblomkov that it can be identified with the set of all partitions via the Wronskian map for Hermite polynomials. We show that the harmonic locus can also be identified with the subset of the Calogero--Moser space introduced by Wilson, which is fixed by the symplectic action of \mathbb C^\times.. As a corollary, for the multiplicity-free part of the locus we effectively solve the inverse problem for the Wronskian map by describing the partition in terms of the spectrum of the corresponding Moser matrix. We also compute the characters of the \mathbb C^\times.-action at the fixed points, proving, in particular, a conjecture of Conti and Masoero.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • Spectral gap problems in non-perturbative quantum theory
  • Holography and bulk-boundary correspondence
  • From Field Theory to Geometry and Topology

Finite-time dynamics of an entanglement engine: current, fluctuations and kinetic uncertainty relations

Self-repellent Brownian Bridges in an Interacting Bose Gas

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved