SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Gravity from quantum mechanics of finite matrices

Shota Komatsu, Adrien Martina, João Penedones, Noé Suchel, Antoine Vuignier, Xiang Zhao

29/1/24 Published in : arXiv:2401.16471

We revisit the Berenstein-Maldacena-Nastase (BMN) conjecture relating M-theory on a PP-wave background and Matrix Quantum Mechanics (MQM) of N×N matrices. In particular, we study the BMN MQM at strong coupling and finite N and derive an effective Hamiltonian that describes non-relativistic free particles in a harmonic trap. The energy spectrum predicted by this Hamiltonian matches the supergravity excitation spectrum around the PP-wave background, if we further assume the existence of bound states. Our derivation is based on the strong coupling expansion of the wavefunction and supersedes the naive path integral approach that can lead to incorrect results, as we demonstrate in a simple toy model. We conclude with open questions about various regimes of the theory when we vary the size of the matrices, the coupling and the temperature.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Trace Anomalies and the Graviton-Dilaton Amplitude

Noise-like analytic properties of imaginary chaos

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved