SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Gravitational-wave signatures of quantum gravity

Ivan Agullo, Vitor Cardoso, Adrian del Rio, Michele Maggiore, Jorge Pullin

27/7/20 Published in : arXiv:2007.13761

We show that gravitational-wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational-wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. Black hole rotation, ubiquitous in astrophysics, improves our ability to probe these quantum effects. Our analysis shows that gravitational-wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.

Entire article

Phase I & II research project(s)

  • Field Theory

The resurgent structure of quantum knot invariants

Genuine high-dimensional quantum steering

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved