SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Genuine high-dimensional quantum steering

Sébastien Designolle, Vatshal Srivastav, Roope Uola, Natalia Herrera Valencia, Will McCutcheon, Mehul Malik, Nicolas Brunner

6/7/20 Published in : arXiv:2007.02718

High-dimensional quantum entanglement can give rise to stronger forms of nonlocal correlations compared to qubit systems. Beyond being of fundamental interest, this offers significant advantages for quantum information processing. The problem of certifying these stronger correlations, however, remains an important challenge, in particular in an experimental setting. Here we theoretically formalise and experimentally demonstrate a notion of genuine high-dimensional quantum nonlocal steering. We show that high-dimensional entanglement combined with judiciously chosen local measurements can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower dimensions. Exploiting the connection between steering and incompatibility of quantum measurements, we derive simple two-setting steering inequalities for certifying the presence of genuine high-dimensional steering. We report the experimental violation of these inequalities using macro-pixel photon-pair entanglement certifying genuine high-dimensional steering in dimensions up to d=15. Our work paves the way for the characterisation and certification of quantum nonlocal correlations in high-dimensional systems.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Gravitational-wave signatures of quantum gravity

Quantum nonlocality in networks can be demonstrated with an arbitrarily small level of independence between the sources

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved