SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Field Theory
    • Geometry, Topology and Physics
    • Quantum Systems
    • Statistical Mechanics
    • String Theory
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Field Theory
  • Geometry, Topology and Physics
  • Quantum Systems
  • Statistical Mechanics
  • String Theory
  • Publications
  • SwissMAP Research Station

Conformal invariance of boundary touching loops of FK Ising model

Antti Kemppainen, Stanislav Smirnov

29/9/15 Published in : arXiv:1509.08858

In this article we show the convergence of a loop ensemble of interfaces in the FK Ising model at criticality, as the lattice mesh tends to zero, to a unique conformally invariant scaling limit. The discrete loop ensemble is described by a canonical tree glued from the interfaces, which then is shown to converge to a tree of branching SLEs. The loop ensemble contains unboundedly many loops and hence our result describes the joint law of infinitely many loops in terms of SLE type processes, and the result gives the full scaling limit of the FK Ising model in the sense of random geometry of the interfaces.
Some other results in this article are convergence of the exploration process of the loop ensemble (or the branch of the exploration tree) to SLE$(\kappa,\kappa-6)$, $\kappa=16/3$, and convergence of a generalization of this process for $4$ marked points to SLE$[\kappa,Z]$, $\kappa=16/3$, where $Z$ refers to a partition function. The latter SLE process is a process that can't be written as a SLE$(\kappa,\rho_1,\rho_2,\ldots)$ process, which are the most commonly considered generalizations of SLEs.

Entire article

Research project(s)

  • Statistical Mechanics

The U(n) free rigid body: Integrability and stability analysis of the equilibria

Lensing signals from Spin-2 perturbations

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved