SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

A Brief Review of the "ETH-Approach to Quantum Mechanics"

9/6/19 Published in : arXiv:1905.06603

To begin with, some of the conundrums concerning Quantum Mechanics and its interpretation(s) are recalled. Subsequently, a sketch of the "ETH-Approach to Quantum Mechanics" is presented. This approach yields a logically coherent quantum theory of "events" featured by physical systems and of direct or projective measurements of physical quantities, without the need to invoke "observers". It enables one to determine the stochastic time evolution of states of physical systems. We also briefly comment on the quantum theory of indirect or weak measurements, which is much easier to understand and more highly developed than the theory of direct (projective) measurements. A relativistic form of the ETH-Approach will be presented in a separate paper.

Entire article

Phase I & II research project(s)

  • Quantum Systems
  • Field Theory
  • Statistical Mechanics
  • Geometry, Topology and Physics

Symmetry results for critical anisotropic p-Laplacian equations in convex cones

Spines for amoebas of rational curves

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved