SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On braided Hopf structures on exterior algebras

Rinat Kashaev, Vladimir Mangazeev

21/5/25 Published in : arXiv:2505.15569

We show that the exterior algebra of a vector space V of dimension greater than one admits a one-parameter family of braided Hopf algebra structures, arising from its identification with a Nichols algebra. We explicitly compute the structure constants with respect to a natural set-theoretic basis.
A one-parameter family of diagonal automorphisms exists, which we use to construct solutions to the (constant) Yang--Baxter equation. These solutions are conjectured to give rise to the two-variable Links--Gould polynomial invariants associated with the super-quantum group U_q(\mathfrak{gl}(N|1)), where N = \dim(V). We support this conjecture through computations for small values of N.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • From Field Theory to Geometry and Topology

From relativistic Vlasov-Maxwell to electron-MHD in the quasineutral regime

Skein theory for the Links-Gould polynomial

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved