SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Bounding the number of self-avoiding walks: Hammersley-Welsh with polygon insertion

Hugo Duminil-Copin, Shirshendu Ganguly, Alan Hammond, Ioan Manolescu

4/9/18 Published in : arXiv:1809.00760

Let c_n = c_n(d) denote the number of self-avoiding walks of length n starting at the origin in the Euclidean nearest-neighbour lattice \mathbb{Z}^d. Let \mu = \lim_n c_n^{1/n} denote the connective constant of \mathbb{Z}^d. In 1962, Hammersley and Welsh [HW62] proved that, for each d \geq 2, there exists a constant C>0 such that c_n \leq \exp(C n^{1/2}) \mu^n for all n \in \mathbb{N}. While it is anticipated that c_n \mu^{-n} has a power-law growth in n, the best known upper bound in dimension two has remained of the form n1/2 inside the exponential.
We consider two planar lattices and prove that c_n \leq \exp(C n^{1/2 -\epsilon}) \mu^n for an explicit constant \epsilon> 0 (where here \mu denotes the connective constant for the lattice in question). The result is conditional on a lower bound on the number of self-avoiding polygons of length n, which is proved to hold on the hexagonal lattice \mathbb{H} for all n, and subsequentially in n for \mathbb{Z}^2. A power-law upper bound on c_n \mu^{-n} for \mathbb{H} is also proved, contingent on a non-quantitative assertion concerning this lattice's connective constant.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Indirect Measurements of a Harmonic Oscillator

Congruent number elliptic curves with rank at least two

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved