SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Bound State Scattering Simplified

Marius de Leeuw, Burkhard Eden, Alessandro Sfondrini

4/8/20 Published in : arXiv:2008.01378

In the description of the AdS5/CFT4 duality by an integrable system the scattering matrix for bound states plays a crucial role: it was initially constructed for the evaluation of finite size corrections to the planar spectrum of energy levels/anomalous dimensions by the thermodynamic Bethe ansatz, and more recently it re-appeared in the context of the glueing prescription of the hexagon approach to higher-point functions. In this work we present a simplified form of this scattering matrix and we make its pole structure manifest. We find some new relations between its matrix elements and also present an explicit form for its inverse. We finally discuss some of its properties including crossing symmetry. Our results will hopefully be useful for computing finite-size effects such as the ones given by the complicated sum-integrals arising from the glueing of hexagons, as well as help towards understanding universal features of the AdS5/CFT4 scattering matrix.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

S matrix for a three-parameter integrable deformation of AdS_3 x S^3 strings

Non-semisimple invariants and Habiro's series

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved