SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

An alternative approach for the mean-field behaviour of spread-out Bernoulli percolation in dimensions d>6

Hugo Duminil-Copin, Romain Panis

4/10/24 Published in : arXiv:2410.03647

This article proposes a new way of deriving mean-field exponents for sufficiently spread-out Bernoulli percolation in dimensions d>6. We obtain an upper bound for the full-space and half-space two-point functions in the critical and near-critical regimes. In a companion paper, we apply a similar analysis to the study of the weakly self-avoiding walk model in dimensions d>4.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Phase III direction(s)

  • Statistical Mechanics and Random Structures
  • Spectral gap problems in non-perturbative quantum theory

Boundary conditions and violations of bulk-edge correspondence in a hydrodynamic model

An alternative approach for the mean-field behaviour of weakly self-avoiding walks in dimensions d>4

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved