SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On the abominable properties of the almost Mathieu operator with well approximated frequencies

Artur Avila, Yoram Last, Mira Shamis, Qi Zhou

15/10/21 Published in : arXiv:2110.07974

We show that some spectral properties of the almost Mathieu operator with frequency well approximated by rationals can be as poor as at all possible in the class of all one-dimensional discrete Schroedinger operators. For the class of critical coupling, we show that the Hausdorff measure of the spectrum may vanish (for appropriately chosen frequencies) whenever the gauge function tends to zero faster than logarithmically. For arbitrary coupling, we show that modulus of continuity of the integrated density of states can be arbitrary close to logarithmic; we also prove a similar result for the Lyapunov exponent as a function of the spectral parameter. Finally, we show that (for any coupling) there exist frequencies for which the spectrum is not homogeneous in the sense of Carleson, and, moreover, fails the Parreau-Widom condition. The frequencies for which these properties hold are explicitly described in terms of the growth of the denominators of the convergents.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

BV equivalence with boundary

Gardner formula for Ising perceptron models at small densities

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved