SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Towards a measurement theory in QFT: "Impossible" quantum measurements are possible but not ideal

Nicolas Gisin, Flavio Del Santo

22/11/23 Published in : arXiv:2311.13644

Naive attempts to put together relativity and quantum measurements lead to signaling between space-like separated regions. In QFT, these are known as impossible measurements. We show that the same problem arises in non-relativistic quantum physics, where joint nonlocal measurements (i.e., between systems kept spatially separated) in general lead to signaling, while one would expect no-signaling (based for instance on the principle of no-nonphysical communication). This raises the question: Which nonlocal quantum measurements are physically possible? We review and develop further a non-relativistic quantum information approach developed independently of the impossible measurements in QFT, and show that these two have been addressing virtually the same problem. The non-relativistic solution shows that all nonlocal measurements are localizable (i.e., they can be carried out at a distance without violating no-signaling) but they (i) may require arbitrarily large entangled resources and (ii) cannot in general be ideal, i.e., are not immediately reproducible. These considerations could help guide the development of a complete theory of measurement in QFT.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

Cosmology and Astrophysics with Standard Sirens and Galaxy Catalogs in View of Future Gravitational Wave Observations

The unitary Fermi gas at large charge and large N

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved