SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Towards the device-independent certification of a quantum memory

Pavel Sekatski, Jean-Daniel Bancal, Marie Ioannou, Mikael Afzelius, Nicolas Brunner

25/4/23 Published in : arXiv:2304.10408

Quantum memories represent one of the main ingredients of future quantum communication networks. Their certification is therefore a key challenge. Here we develop efficient certification methods for quantum memories. Considering a device-independent approach, where no a priori characterisation of sources or measurement devices is required, we develop a robust self-testing method for quantum memories. We then illustrate the practical relevance of our technique in a relaxed scenario by certifying a fidelity of 0.87 in a recent solid-state ensemble quantum memory experiment. More generally, our methods apply for the characterisation of any device implementing a qubit identity quantum channel.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

Using a one-dimensional finite-element approximation of Webster's horn equation to estimate individual ear canal acoustic transfer from input impedances

Potentiality realism: A realistic and indeterministic physics based on propensities

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved