# Testing real quantum theory in an optical quantum network

### Zheng-Da Li, Ya-Li Mao, Mirjam Weilenmann, Armin Tavakoli, Hu Chen, Lixin Feng, Sheng-Jun Yang, Marc-Olivier Renou, David Trillo, Thinh P. Le, Nicolas Gisin, Antonio Acín, Miguel Navascués, Zizhu Wang, Jingyun Fan

**30/11/21**Published in : arXiv:2111.15128

Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios that cannot be modelled by the natural real-number analog of standard quantum theory. Here, we tailor such tests for implementation in state-of-the-art photonic systems. We experimentally demonstrate quantum correlations in a network of three parties and two independent EPR sources that violate the constraints of real quantum theory by over 4,5 standard deviations, hence disproving real quantum theory as a universal physical theory.