SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Quantum spectral problems and isomonodromic deformations

Mikhail Bershtein, Pavlo Gavrylenko, Alba Grassi

3/5/21 Published in : arXiv:2105.00985

We develop a self-consistent approach to study the spectral properties of a class of quantum mechanical operators by using the knowledge about monodromies of 2\times 2 linear systems (Riemann-Hilbert correspondence). Our technique applies to a variety of problems, though in this paper we only analyse in detail two examples. First we review the case of the (modified) Mathieu operator, which corresponds to a certain linear system on the sphere and makes contact with the Painlevé \mathrm{III}_3 equation. Then we extend the analysis to the 2-particle elliptic Calogero-Moser operator, which corresponds to a linear system on the torus. By using the Kiev formula for the isomonodromic tau functions, we obtain the spectrum of such operators in terms of self-dual Nekrasov functions (\epsilon_1+\epsilon_2=0). Through blowup relations, we also find Nekrasov-Shatashvili type of quantizations (\epsilon_2=0).
In the case of the torus with one regular singularity we obtain certain results which are interesting by themselves. Namely, we derive blowup equations (filling some gaps in the literature) and we relate them to the bilinear form of the isomonodromic deformation equations. In addition, we extract the \epsilon_2\to 0 limit of the blowup relations from the regularized action functional and CFT arguments.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory
  • Geometry, Topology and Physics

Quantum Key Distribution with Few Assumptions

Excitation Spectrum for Bose Gases beyond the Gross-Pitaevskii Regime

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved