SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Quantum Anomalies and Logarithmic Derivatives

J.E. Gough, T.S. Ratiu, O.G. Smolyanov

10/1/16 Published in : arXiv:1601.02195

This papers deals with connections between quantum anomalies and transformations of Feynman pseudo-measures. Mathematical objects related to the notion of the volume element in an infinite-dimensional space considered in the physics literature are considered and disagreement in the related literature regarding the origin of quantum anomalies is explained.

Entire article

Phase I & II research project(s)

  • Quantum Systems
  • Field Theory
  • Geometry, Topology and Physics

Fast decay of covariances under delta-pinning in the critical and supercritical membrane model

Lectures on the local semicircle law for Wigner matrices

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved