SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Proofs of network quantum nonlocality aided by machine learning

Alejandro Pozas-Kerstjens, Nicolas Gisin, Marc-Olivier Renou

28/2/23 Published in : Phys. Rev. Lett. 130, 090201

The study of nonlocality in scenarios that depart from the bipartite Einstein-Podolsky-Rosen setup is allowing to uncover many fundamental features of quantum mechanics. Recently, an approach to building network-local models based on machine learning lead to the conjecture that the family of quantum triangle distributions of [DOI:https://doi.org/10.1103/PhysRevLett.123.140401] did not admit triangle-local models in a larger range than the original proof. We prove part of this conjecture in the affirmative. Our approach consists in reducing the family of original, four-outcome distributions to families of binary-outcome ones, which we prove not to admit triangle-local models by means of the inflation technique. In the process, we produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.

Entire article ArXiv

Phase I & II research project(s)

  • Quantum Systems

Entanglement swapping and quantum correlations via Elegant Joint Measurements

The nonequilibrium cost of accurate information processing

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved