SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

An Operator Product Expansion for Form Factors III. Finite Coupling and Multi-Particle Contributions

Amit Sever, Alexander G. Tumanov, Matthias Wilhelm

20/12/21 Published in : arXiv:2112.10569

Form factors in planar \mathcal{N}=4 super-Yang-Mills theory have a dual description in terms of periodic Wilson loops. This duality maps the multi-collinear expansion of the former to an operator product expansion of the latter. The coefficients of this expansion are decomposed in terms of several elementary building blocks and can be determined at finite 't Hooft coupling using bootstrap and integrability techniques. Some of these blocks are known from an analogous expansion of scattering amplitudes. In addition to these, the expansion for form factors includes a new type of building block, called {\it form factor transitions}, that encode information about the local operator. In the present paper, we consider the form factor of the chiral part of the stress-tensor supermultiplet. We bootstrap the corresponding form factor transitions of two-particle flux-tube states and use them to predict the leading term in the collinear expansion at finite coupling. The transitions we find can be expressed in terms of a quantity that previously appeared in a seemingly unrelated context, namely the octagon kernel. Lastly, we use a factorized ansatz to determine the multi-particle form factor transitions at finite coupling, which we use to predict the first subleading term in the collinear expansion. A perfect match is found between our predictions and the available perturbative data.

Entire article

Phase I & II research project(s)

  • Field Theory

Bogoliubov Theory in the Gross-Pitaevskii Limit: a Simplified Approach

Sailing past the End of the World and discovering the Island

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved