SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Nonlinear stability at the Eckhaus boundary

Julien Guillod, Guido Schneider, Peter Wittwer, Dominik Zimmermann

12/3/18 Published in : arXiv:1803.04145

The real Ginzburg-Landau equation possesses a family of spatially periodic equilibria. If the wave number of an equilibrium is strictly below the so called Eckhaus boundary the equilibrium is known to be spectrally and diffusively stable, i.e., stable w.r.t. small spatially localized perturbations. If the wave number is above the Eckhaus boundary the equilibrium is unstable. Exactly at the boundary spectral stability holds. The purpose of the present paper is to establish the diffusive stability of these equilibria. The limit profile is determined by a nonlinear equation since a nonlinear term turns out to be marginal w.r.t. the linearized dynamics.

Entire article

Phase I & II research project(s)

  • Field Theory

Holomorphic anomaly equations for the formal quintic

Tensionless String Spectra on AdS3

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved