SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Non-perturbative approaches to the quantum Seiberg-Witten curve

Alba Grassi, Jie Gu, Marcos Marino

19/8/19 Published in : arXiv:1908.07065

We study various non-perturbative approaches to the quantization of the Seiberg-Witten curve of {\cal N}=2, SU(2) super Yang-Mills theory, which is closely related to the modified Mathieu operator. The first approach is based on the quantum WKB periods and their resurgent properties. We show that these properties are encoded in the TBA equations of Gaiotto-Moore-Neitzke determined by the BPS spectrum of the theory, and we relate the Borel-resummed quantum periods to instanton calculus. In addition, we use the TS/ST correspondence to obtain a closed formula for the Fredholm determinant of the modified Mathieu operator. Finally, by using blowup equations, we explain the connection between this operator and the τ function of Painleve \rm III.

Entire article

Phase I & II research project(s)

  • String Theory
  • Geometry, Topology and Physics

Colony entropy—Allocation of goods in ant colonies

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory: Derivation, Generalization, Integrability and Discrete Reparametrization Symmetry

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved