SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Massive Ray-Singer Torsion and Path Integrals

Matthias Blau, Mbambu Kakona, George Thompson

24/6/22 Published in : arXiv:2206.12268

Zero modes are an essential part of topological field theories, but they are frequently also an obstacle to the explicit evaluation of the associated path integrals. In order to address this issue in the case of Ray-Singer Torsion, which appears in various topological gauge theories, we introduce a massive variant of the Ray-Singer Torsion which involves determinants of the twisted Laplacian with mass but without zero modes. This has the advantage of allowing one to explicitly keep track of the zero mode dependence of the theory. We establish a number of general properties of this massive Ray-Singer Torsion. For product manifolds M=N \times S^1 and mapping tori one is able to interpret the mass term as a flat \mathbb{R}_{+} connection and one can represent the massive Ray-Singer Torsion as the path integral of a Schwarz type topological gauge theory. Using path integral techniques, with a judicious choice of an algebraic gauge fixing condition and a change of variables which leaves one with a free action, we can evaluate the torsion in closed form. We discuss a number of applications, including an explicit calculation of the Ray-Singer Torsion on S^1 for G=PSL(2,R) and a path integral derivation of a generalisation of a formula of Fried for the torsion of finite order mapping tori.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Refined Bobtcheva-Messia Invariants of 4-Dimensional 2-Handlebodies

Fock-Goncharov dual cluster varieties and Gross-Siebert mirrors

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved