SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

The linearized Einstein equations with sources

Peter Hintz

13/6/23 Published in : arXiv:2306.07715

On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino and Chruściel-Delay.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • Differential equations of Mathematical Physics
  • From Field Theory to Geometry and Topology

Gluing small black holes along timelike geodesics I: formal solution

Properties of Hesse derivatives of cubic curves

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved