SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Field Theory
    • Geometry, Topology and Physics
    • Quantum Systems
    • Statistical Mechanics
    • String Theory
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Field Theory
  • Geometry, Topology and Physics
  • Quantum Systems
  • Statistical Mechanics
  • String Theory
  • Publications
  • SwissMAP Research Station

On the light-ray algebra in conformal field theories

Gregory P. Korchemsky, Alexander Zhiboedov

27/9/21 Published in : arXiv:2109.13269

We analyze the commutation relations of light-ray operators in conformal field theories. We first establish the algebra of light-ray operators built out of higher spin currents in free CFTs and find explicit expressions for the corresponding structure constants. The resulting algebras are remarkably similar to the generalized Zamolodchikov's W_\inftyalgebra in a two-dimensional conformal field theory. We then compute the commutator of generalized energy flow operators in a generic, interacting CFTs in d>2. We show that it receives contribution from the energy flow operator itself, as well as from the light-ray operators built out of scalar primary operators of dimension \Delta \leq d-2, that are present in the OPE of two stress-energy tensors. Commutators of light-ray operators considered in the present paper lead to CFT sum rules which generalize the superconvergence relations and naturally connect to the dispersive sum rules, both of which have been studied recently.

Entire article

Research project(s)

  • String Theory
  • Field Theory

Hyperbolic Fourier series

BV equivalence with boundary

  • Leading house

  • Co-leading house


© SwissMAP 2022 - All rights reserved