SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Intrinsic and extrinsic correlations of galaxy shapes and sizes in weak lensing data

Basundhara Ghosh, Ruth Durrer, Bjoern Malte Schaefer

10/5/20 Published in : arXiv:2005.04604

The subject of this paper are shape and size correlations of galaxies due to weak gravitational lensing and due to direct tidal interaction of elliptical galaxies with gravitational fields sourced by the cosmic large-scale structure. Setting up a linear intrinsic alignment model for elliptical galaxies which parameterises the reaction of the galaxy to an external tidal shear field through the velocity dispersion, we predict intrinsic correlations and cross-correlations with weak lensing for both shapes and sizes, juxtaposing both types of spectra with lensing. We quantify the observability of the intrinsic shape and size correlations and estimate with the Fisher-formalism how well the alignment parameter can be determined from the Euclid weak lensing survey. Specifically, we find a contamination of the weak lensing convergence spectra with an intrinsic size correlation amounting to up to 10% over a wide multipole range

\ell=100\ldots 300

, with a corresponding cross-correlation exhibiting a sign change, similar to the cross-correlation between weak lensing shear and intrinsic shapes. A determination of the alignment parameter yields a precision of a few percent forecasted for Euclid, and we show that all shape and many size correlations should be measurable with Euclid.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

From quantum curves to topological string partition functions II

Primordial magnetic helicity evolution with homogeneous magnetic field from inflation

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved