SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Field Theory
    • Geometry, Topology and Physics
    • Quantum Systems
    • Statistical Mechanics
    • String Theory
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Field Theory
  • Geometry, Topology and Physics
  • Quantum Systems
  • Statistical Mechanics
  • String Theory
  • Publications
  • SwissMAP Research Station

Intersection theory on moduli of disks, open KdV and Virasoro

Rahul Pandharipande, Jake P. Solomon, Ran J. Tessler

8/9/14 Published in : arXiv:1409.2191

We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the τ-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations.
Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.

Entire article

Research project(s)

  • Geometry, Topology and Physics

Gaudin subalgebras and wonderful models

The phase transitions of the planar random-cluster and Potts models with q larger than 1 are sharp

  • Leading house

  • Co-leading house


© SwissMAP 2022 - All rights reserved