SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Image Rotation from weak Lensing

Jérémie Francfort, Giulia Cusin, Ruth Durrer

16/6/21 Published in : arXiv:2106.08631

Forthcoming radio surveys will include full polarisation information, which can be potentially useful for weak lensing observations. We propose a new method to measure the (integrated) gravitational field between a source and the observer, by looking at the angle between the morphology of a radio galaxy and the orientation of the polarisation. For this we use the fact that, while the polarisation of a photon is parallel transported along the photon geodesic, the infinitesimal shape of the source, e.g. its principal axis in the case of an ellipse, is Lie transported. As an example, we calculate the rotation of the shape vector with respect to the polarisation direction which is generated by lensing by a distribution of foreground Schwarzschild lenses. For radio galaxies, the intrinsic morphological orientation of a source and its polarised emission are correlated. It follows that observing both the polarisation and the morphological orientation provides information on both the unlensed source orientation and on the gravitational potential along the line of sight.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

A new test of the Cosmological Principle: measuring our peculiar velocity and the large scale anisotropy independently

Small scale effects in the observable power spectrum at large angular scales

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved