SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Gravity Coupled with Scalar, SU(n), and Spinor Fields on Manifolds with Null-Boundary

Alberto S. Cattaneo, Filippo Fila Robattino, Valentino Huang, Manuel Tecchiolli

17/1/24 Published in : arXiv:2401.09337

In this paper, we present a theory for gravity coupled with scalar, SU(n) and spinor fields on manifolds with null-boundary. We perform the symplectic reduction of the space of boundary fields and give the constraints of the theory in terms of local functionals of boundary vielbein and connection. For the three different couplings, the analysis of the constraint algebra shows that the set of constraints does not form a first class system.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • From Field Theory to Geometry and Topology

Schrödinger Operators with Potentials Generated by Hyperbolic Transformations: II. Large Deviations and Anderson Localization

A short review on Improvements and stability for some interpolation inequalities

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved