SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Genus Two Partition Functions and Renyi Entropies of Large c CFTs

Alexandre Belin, Christoph A. Keller, Ida G. Zadeh

26/4/17 Published in : arXiv:1704.08250

We compute genus two partition functions in two dimensional conformal field theories at large central charge, focusing on surfaces that give the third Renyi entropy of two intervals. We compute this for generalized free theories and for symmetric orbifolds, and compare it to the result in pure gravity. We find a new phase transition if the theory contains a light operator of dimension \Delta\leq0.19. This means in particular that unlike the second Renyi entropy, the third one is no longer universal.

Entire article

Phase I & II research project(s)

  • Field Theory

A dequantized metaplectic knot invariant

Higher spins on AdS3 from the worldsheet

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved