SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

The future of secure communications: device independence in quantum key distribution

Seyed Arash Ghoreishi, Giovanni Scala, Renato Renner, Letícia Lira Tacca, Jan Bouda, Stephen Patrick Walborn, Marcin Pawłowski

8/4/25 Published in : arXiv:2504.06350

In the ever-evolving landscape of quantum cryptography, Device-independent Quantum Key Distribution (DI-QKD) stands out for its unique approach to ensuring security based not on the trustworthiness of the devices but on nonlocal correlations. Beginning with a contextual understanding of modern cryptographic security and the limitations of standard quantum key distribution methods, this review explores the pivotal role of nonclassicality and the challenges posed by various experimental loopholes for DI-QKD. Various protocols, security against individual, collective and coherent attacks, and the concept of self-testing are also examined, as well as the entropy accumulation theorem, and additional mathematical methods in formulating advanced security proofs. In addition, the burgeoning field of semi-device-independent models (measurement DI--QKD, Receiver DI--QKD, and One--sided DI--QKD) is also analyzed. The practical aspects are discussed through a detailed overview of experimental progress and the open challenges toward the commercial deployment in the future of secure communications.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

The firewall paradox is Wigner's friend paradox

Events and their Localisation are Relative to a Lab

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved