SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Fiber connectivity and bifurcation diagrams of almost toric integrable systems

A. Pelayo, T. S. Ratiu, S. Vu Ngoc

1/4/15 Published in : Journal of Symplectic Geometry, 13(2), 343-386, 2015

We describe the bifurcation diagrams of almost toric integrable Hamiltonian systems on a four dimensional symplectic manifold M, not necessarily compact. We prove that, under a weak assumption, the connectivity of the fibers of the induced singular Lagrangian fibration M→R^2 can be detected from the bifurcation diagram alone. In this case, it is possible to give a detailed description of the image of the fibration.

Entire article

Phase I & II research project(s)

  • Geometry, Topology and Physics

Lagrangian Reductions and Integrable Systems in Condensed Matter

Higher spins in the symmetric orbifold of K3

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved