SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Creative and geometric times in physics, mathematics, logic, and philosophy

Flavio Del Santo, Nicolas Gisin

9/4/24 Published in : arXiv:2404.06566

We propose a distinction between two different concepts of time that play a role in physics: geometric time and creative time. The former is the time of deterministic physics and merely parametrizes a given evolution. The latter is instead characterized by real change, i.e. novel information that gets created when a non-necessary event becomes determined in a fundamentally indeterministic physics. This allows us to give a naturalistic characterization of the present as the moment that separates the potential future from the determined past. We discuss how these two concepts find natural applications in classical and intuitionistic mathematics, respectively, and in classical and multivalued tensed logic, as well as how they relate to the well-known A- and B-theories in the philosophy of time.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

The low multipoles in the Pantheon+SH0ES data

Joint-measurability and quantum communication with untrusted devices

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved