SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

A Cheap Alternative to the Lattice?

Matthijs Hogervorst, Slava Rychkov, Balt van Rees

4/9/14 Published in : arXiv:1409.1581

We show how to perform accurate, nonperturbative and controlled calculations in quantum field theory in d dimensions. We use the Truncated Conformal Space Approach (TCSA), a Hamiltonian method which exploits the conformal structure of the UV fixed point. The theory is regulated in the IR by putting it on a sphere of a large finite radius. The QFT Hamiltonian is expressed as a matrix in the Hilbert space of CFT states. After restricting ourselves to energies below a certain UV cutoff, an approximation to the spectrum is obtained by numerical diagonalization of the resulting finite-dimensional matrix. The cutoff dependence of the results can be computed and efficiently reduced via a renormalization procedure. We work out the details of the method for the $\phi^4$ theory in d dimensions with d not necessarily integer. A numerical analysis is then performed for the specific case d = 2.5, a value chosen in the range where UV divergences are absent. By going from weak to intermediate to strong coupling, we are able to observe the symmetry-preserving, symmetry-breaking, and conformal phases of the theory, and perform rough measurements of masses and critical exponents. As a byproduct of our investigations we find that both the free and the interacting theories in non integral d are not unitary, which however does not seem to cause much effect at low energies.

Entire article

Phase I & II research project(s)

  • Field Theory

Trace as an alternative decategorification functor

Exact results in N=8 Chern-Simons-matter theories and quantum geometry

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved