SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Field Theory
    • Geometry, Topology and Physics
    • Quantum Systems
    • Statistical Mechanics
    • String Theory
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Field Theory
  • Geometry, Topology and Physics
  • Quantum Systems
  • Statistical Mechanics
  • String Theory
  • Publications
  • SwissMAP Research Station

A-branes, foliations and localization

Sibasish Banerjee, Pietro Longhi, Mauricio Romo

28/1/22 Published in : arXiv:2201.12223

This paper studies a notion of enumerative invariants for stable A-branes, and discusses its relation to invariants defined by spectral and exponential networks. A natural definition of stable A-branes and their counts is provided by the string theoretic origin of the topological A-model. This is the Witten index of the supersymmetric quantum mechanics of a single D3 brane supported on a special Lagrangian in a Calabi-Yau threefold. Geometrically, this is closely related to the Euler characteristic of the A-brane moduli space. Using the natural torus action on this moduli space, we reduce the computation of its Euler characteristic to a count of fixed points via equivariant localization. Studying the A-branes that correspond to fixed points, we make contact with definitions of spectral and exponential networks. We find agreement between the counts defined via the Witten index, and the BPS invariants defined by networks. By extension, our definition also matches with Donaldson-Thomas invariants of B-branes related by homological mirror symmetry.

Entire article

Research project(s)

  • String Theory
  • Field Theory

The gauge invariant cosmological Jacobi map from weak lensing at leading order

Derivation of the Maxwell-Schrödinger Equations: A note on the infrared sector of the radiation field

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved