SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On the asymptotic growth of Birkhoff integrals for locally Hamiltonian flows and ergodicity of their extensions

Krzysztof Frączek, Corinna Ulcigrai

11/12/21 Published in : arXiv:2112.05939

We consider smooth area-preserving flows (also known as locally Hamiltonian flows) on surfaces of genus g\geq 1 and study ergodic integrals of smooth observables along the flow trajectories. We show that these integrals display a \emph{power deviation spectrum} and describe the cocycles that lead the pure power behaviour, giving a new proof of results by Forni (Annals 2002) and Bufetov (Annals 2014) and generalizing them to observables which are non-zero at fixed points. This in particular completes the proof of the original formulation of the Kontsevitch-Zorich conjecture. Our proof is based on building suitable \emph{correction operators} for cocycles with logarithmic singularities over a full measure set of interval exchange transformations (IETs), in the spirit of Marmi-Moussa-Yoccoz work on piecewise smooth cocycles over IETs. In the case of symmetric singularities, exploiting former work of the second author (Annals 2011), we prove a tightness result for a finite codimension class of observables. We then apply the latter result to prove the existence of ergodic infinite extensions for a full measure set of locally Hamiltonian flows with non-degenerate saddles in any genus g\geq 2.

Entire article

Phase I & II research project(s)

  • Geometry, Topology and Physics

Probing multi-particle unitarity with the Landau equations

Near critical scaling relations for planar Bernoulli percolation without differential inequalities

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved